Invertibility properties of operator matrices on Hilbert spaces

نویسندگان

چکیده

Denote by $$T_n^d(A)$$ an upper triangular operator matrix of dimension n whose diagonal entries are given and the others unknown. In this article, we provide necessary sufficient conditions for various types Fredholm Weyl completions . As consequences, recover many known results Zhang Wu (J Math Anal Appl 392(2):103–110, 2012) case $$n=2$$ already existing in literature, as well some perturbation Huang (Acta Sin (Engl Ser) 36(7):783–796, 2020; Ann Funct 11(3):780–798, 2020) arbitrary $$n\ge 2$$

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Operator-valued bases on Hilbert spaces

In this paper we develop a natural generalization of Schauder basis theory, we term operator-valued basis or simply ov-basis theory, using operator-algebraic methods. We prove several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality. We prove that the operators of a dual ov-basis are continuous. We also dene the concepts of Bessel, Hilbert ov-basis and obta...

متن کامل

Approximation properties of certain operator-induced norms on Hilbert spaces

We consider a class of operator-induced norms, acting as finite-dimensional surrogates to the L2 norm, and study their approximation properties over Hilbert subspaces of L2. The class includes, as a special case, the usual empirical norm encountered, for example, in the context of nonparametric regression in a reproducing kernel Hilbert space (RKHS). Our results have implications to the analysi...

متن کامل

operator-valued bases on hilbert spaces

in this paper we develop a natural generalization of schauder basis theory, we term operator-valued basis or simply ov-basis theory, using operator-algebraic methods. we prove several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality. we prove that the operators of a dual ov-basis are continuous. we also de ne the concepts of bessel, hilbert ov-basis and obt...

متن کامل

Interpolation between Hilbert , Banach and Operator spaces

Motivated by a question of Vincent Lafforgue, we study the Banach spaces X satisfying the following property: there is a function ε → ∆ X (ε) tending to zero with ε > 0 such that every operator T : L 2 → L 2 with T ≤ ε that is simultaneously contractive (i.e. of norm ≤ 1) on L 1 and on L ∞ must be of norm ≤ ∆ X (ε) on L 2 (X). We show that ∆ X (ε) ∈ O(ε α) for some α > 0 iff X is isomorphic to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in operator theory

سال: 2023

ISSN: ['2538-225X', '2662-2009']

DOI: https://doi.org/10.1007/s43036-023-00268-8